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Inverse Random Source Scattering Problems in Several Dimensions∗

Gang Bao† , Chuchu Chen‡ , and Peijun Li‡

Abstract. This paper concerns the source scattering problems for acoustic wave propagation, which is governed
by the two- or three-dimensional stochastic Helmholtz equation. As a source, the electric current
density is assumed to be a random function driven by an additive colored noise. Given the random
source, the direct problem is to determine the radiated random wave field. The inverse problem is
to reconstruct statistical properties of the source from the boundary measurement of the radiated
random wave field. In this work, we consider both the direct and inverse problems. We show that
the direct problem has a unique mild solution via a constructive proof. Using the mild solution, we
derive effective Fredholm integral equations for the inverse problem. A regularized Kaczmarz method
is developed by adopting multifrequency scattering data to overcome the challenges of solving the
ill-posed and large scale integral equations. Numerical experiments are presented to demonstrate the
efficiency of the proposed method. The framework and methodology developed here are expected to
be applicable to a wide range of stochastic inverse source problems.
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1. Introduction. Motivated by significant scientific and industrial applications, the field of
inverse problems has undergone tremendous growth in the last several decades since Calderón
proposed an inverse conductivity problem [11]. In particular, inverse scattering problems have
progressed to an area of intense activity and are currently in the foreground of mathematical
research in scattering theory [14]. As an important example, the inverse source scattering prob-
lem is to determine the unknown source that generates a prescribed radiated wave pattern. It
is motivated by medical applications where it is desirable to use electric or magnetic measure-
ments on the surface of the human body, such as the head, to infer the source currents inside of
the body, such as the brain, that produced these measured data [21, 25]. It has been considered
as a basic tool for the solution of reflection tomography and diffusive optical tomography.

The inverse source scattering problem has been investigated extensively in the literature.
There is a lot of information available concerning its solution mathematically and numerically
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[2, 3, 4, 17, 19, 28, 33]. For instance, there exist an infinite number of sources that radiate fields
which vanish identically outside their supported domain so that the inverse source problem
does not have a unique solution at a fixed frequency [18, 23]. More challenging, it is ill-posed
as small variations in the measured data can lead to huge errors in the reconstructions. To
overcome these obstacles, one may either seek the minimum energy solution, which represents
the pseudoinverse of the problem, or use multifrequency scattering data to ensure uniqueness
and gain increased stability of the solution [7, 8, 9].

Stochastic inverse problems refer to inverse problems that involve uncertainties, which are
widely introduced into the mathematical models for three major reasons: randomness may
directly appear in the studied systems [20], incomplete knowledge of the systems must be
modeled by uncertainties [26], and stochastic techniques are introduced to couple the large
scale span [30]. They are commonly encountered and can happen simultaneously for many
different problems [22]. Compared with classical inverse problems, stochastic inverse problems
have substantially more difficulties due to the randomness. Unlike the deterministic nature of
solutions for classical inverse problems, solutions for stochastic inverse problems are random
functions. It is less meaningful to find a solution for a particular realization of the randomness.
The statistics, such as mean, variance, and even higher order moments, of the solution are
more desirable.

The inverse random source scattering problem is used to determine statistical structures of
the source from boundary measurements of the radiated fields. This is an important problem
that arises, e.g., in fluorescence microscopy [32], where the randomly distributed fluorescence
in the specimen (such as green fluorescent protein) gives rise to emitted light which is focused
to the detector by the same objective that is used for the excitation. It is desirable to model
the fluorescence light source as a random function. Although the deterministic counterpart has
been well studied, little is known for the stochastic case [16]. Recently, some one-dimensional
stochastic inverse source problems were considered in [6, 10, 27], where the governing equations
are stochastic ordinary differential equations. Unfortunately, these approaches could not be
extended directly to the multidimensional problem.

In this paper, we study both the direct and inverse source scattering problems for the two-
or three-dimensional stochastic Helmholtz equation. As a source, the electric current density
is assumed to be a random function driven by a colored noise which includes the white noise
when the correlation function is the delta function. Given the source, the direct problem is
to determine the random wave field. The inverse problem is to reconstruct the mean and
variance of the random source by using the same statistics of the radiated fields, which are
measured on a boundary enclosing the compactly supported source at multiple frequencies.
By constructing a sequence of regular processes approximating the colored noise, we show that
there exists a unique mild solution to the stochastic direct scattering problem. By examining
the expectation and variance of the mild solution, we derive Fredholm integral equations to
solve the inverse problem for the white noise. It is known that Fredholm integral equations
of the first kind are severely ill-posed, which can be clearly seen from the distribution of
singular values for our integral equations. It is particularly true for the integral equations
of reconstructing the variance. To overcome the challenges of the ill-posed and large scale
integral equations, we propose equations with better conditioning via linear combination of
the original equations and develop a regularized Kaczmarz method to solve the resulting linear
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system of algebraic equations. The method is consistent with the data nature and requires
solving a relatively small scale system at each iteration. Numerical experiments show that the
proposed method is effective for solving both the two- and three-dimensional problems.

This paper presents the first approach for solving the stochastic inverse source scattering
problem in higher dimensions. Apparently, the techniques differ greatly from the existing
one-dimensional work [6, 27] because we need to consider more complicated stochastic par-
tial differential equations instead of stochastic ordinary differential equations. The proposed
framework and methodology can be directly applied to solving many other inverse random
source problems of stochastic differential equations such as the Poisson equation, the heat
equation, and the wave equation. It also has great potential to be applicable to more general
stochastic inverse problems.

The outline of this paper is as follows. In section 2, we introduce the stochastic Helmholtz
equation and discuss the solutions for the deterministic and stochastic problems. Section
3 is devoted to the inverse problem, where Fredholm integral equations are deduced and
the regularized Kaczmarz method is developed to reconstruct the mean and the variance.
Numerical experiments are presented in section 4 to illustrate the performance of the proposed
method. The paper is concluded with general remarks and directions for current and future
research in section 5.

2. Direct problem. In this section, we introduce the Helmholtz equation and discuss the
solutions of the deterministic and stochastic direct source scattering problems.

2.1. Problem formulation. Consider the scattering problem of the Helmholtz equation
in a homogeneous medium

(2.1) ∆u+ κ2u = f in Rd,

where d = 2 or 3, the wavenumber κ > 0 is a constant, the electric current density f is
assumed to be a random function driven by an additive noise

(2.2) f(x) = g(x) + σ(x)Ẇx,

and u is the radiated random wave field. Here g and σ ≥ 0 are two deterministic real func-
tions which have compact supports contained in the rectangular domain D ⊂ Rd, and Ẇx is
a homogeneous colored noise. To make the paper self-contained, some preliminaries are pre-
sented in the appendix for the Brownian sheet, white noise, colored noise, and corresponding
stochastic integrals. More details can be found in [15, 31] on an introduction to stochastic
differential equations. The Sommerfeld radiation condition is required for the radiated wave
field,

(2.3) lim
r→∞

r
d−1
2 (∂ru− iκu) = 0, r = |x|,

uniformly in all directions x̂ = x/|x|.
Denote by Bρ(y) the ball with radius ρ and center at y, i.e., Bρ(y) = {x ∈ Rd : |x−y| < ρ}.

Let Bρ = Bρ(0) if the center is at the origin. Let R > 0 be large enough such that D̄ ⊂ BR.
Denote by ∂BR the boundary of BR. Given the random electric current density function
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f , the direct problem is to determine the random wave field u of the stochastic scattering
problem (2.1), (2.3). The inverse problem is to reconstruct g and σ2 from the measured wave
field on ∂BR at a finite number of wavenumbers κj , j = 1, . . . ,m.

2.2. Deterministic direct problem. We begin with the solution for the deterministic di-
rect problem. Let σ = 0 in (2.2), i.e., no randomness is present in the source. The stochastic
scattering problem (2.1), (2.3) reduces to the deterministic scattering problem:

(2.4)

{
∆u+ κ2u = g in Rd,

∂ru− iκu = o(r−
d−1
2 ) as r →∞.

Given g ∈ L2(D), it is known that the scattering problem (2.4) has a unique solution

(2.5) u(x) =

∫
D
G(x, y)g(y)dy,

where G is Green’s function of the Helmholtz equation. Explicitly, we have

G(x, y) =


G2(x, y) = − i

4
H

(1)
0 (κ|x− y|), d = 2,

G3(x, y) = − 1

4π

eiκ|x−y|

|x− y|
, d = 3.

The following regularity results of Green’s function play an important role in the subse-
quent analysis.

Lemma 2.1. Let Ω ⊂ Rd be a bounded domain. It holds that G(x, y) ∈ L2(Ω) for any
y ∈ Ω.

Proof. Let ρ = supx,y∈Ω |x− y|. We have Ω̄ ⊂ Bρ(y). It is known for d = 2 that

G2(x, y) = − 1

2π
log

1

|x− y|
+ V (x, y),

where V is a Lipschitz continuous function. Hence, it suffices to show that

log
1

|x− y|
∈ L2(Ω) for any y ∈ Ω.

A simple calculation yields∫
Ω

∣∣∣∣log
1

|x− y|

∣∣∣∣2 dx ≤
∫
Bρ(y)

∣∣∣∣log
1

|x− y|

∣∣∣∣2 dx .
∫ ρ

0
r

∣∣∣∣log
1

r

∣∣∣∣2 dr <∞.

For d = 3, we have ∫
Ω
|G3(x, y)|2dx .

∫
Bρ(y)

1

|x− y|2
dx .

∫ ρ

0
dr <∞,

which completes the proof.

Throughout the paper, a . b stands for a ≤ Cb, where C > 0 is a constant. The specific
value of C is not required but should be clear from the context.
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Lemma 2.2. Let Ω ⊂ Rd be a bounded domain.
1. When d = 2, it holds for any α ∈ (3

2 , ∞) that

(2.6)

∫
Ω
|G2(x, y)−G2(x, z)|αdx . |y − z|

3
2 for any y, z ∈ Ω.

2. When d = 3, it holds for any β ∈ (1, 3) and γ = min{3− β, β} that

(2.7)

∫
Ω
|G3(x, y)−G3(x, z)|βdx . |y − z|γ for any y, z ∈ Ω.

Proof. Here we only present the proof of (2.6) since the proof of (2.7) can be found in [12].
Similarly, it suffices to show (2.6) for the singular part of G2. A simple calculation yields∫

Ω

∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣α dx

=

∫
Ω

(
1

|x− y|
− 1

|x− z|

) 3
2
∣∣∣∣log

1

|x− y|
− log

1

|x− z|

∣∣∣∣α− 3
2

×

(∫ 1

0

(
t

|x− y|
+

1− t
|x− z|

)−1

dt

) 3
2

dx

≤
∫

Ω

|y − z|
3
2

|x− y|
3
2 |x− z|

3
2

∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣α− 3
2

×

(∫ 1

0

(
t

|x− y|
+

1− t
|x− z|

)−1

dt

) 3
2

dx

≤ |y − z|
3
2

∫
Ω

(|x− y|+ |x− z|)
3
2

|x− y|
3
2 |x− z|

3
2

∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣α− 3
2

dx

≤ |y − z|
3
2

∫
Ω

(
1

|x− y|
3
2

+
1

|x− z|
3
2

)∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣α− 3
2

dx,

where in the second inequality we have utilized the estimate ∀ t ∈ [0, 1],

w(t) =

(
t

|x− y|
+

1− t
|x− z|

)−1

≤ max{w(0), w(1)} < w(0) + w(1) = |x− y|+ |x− z|.

Using the Hölder inequality, we get that∫
Ω

∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣α dx

≤ |y − z|
3
2

∫
Ω

(
1

|x− y|
3
2

+
1

|x− z|
3
2

) 6
5

dx


5
6

×

(∫
Ω

∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣6α−9

dx

) 1
6

.



1268 GANG BAO, CHUCHU CHEN, AND PEIJUN LI

Let ρ = supx,y∈Ω |x− y|. We have Ω̄ ⊂ Bρ(y) and Ω̄ ⊂ Bρ(z). It is easy to verify that

∫
Ω

(
1

|x− y|
3
2

+
1

|x− z|
3
2

) 6
5

dx .
∫
Bρ(y)

1

|x− y|
9
5

dx+

∫
Bρ(z)

1

|x− z|
9
5

dx

.
∫ ρ

0
r−

4
5 dr +

∫ ρ

0
r−

4
5 dr <∞

and ∫
Ω

∣∣∣∣log
1

|x− y|
− log

1

|x− z|

∣∣∣∣6α−9

dx

.
∫
Bρ(y)

∣∣∣∣log
1

|x− y|

∣∣∣∣6α−9

dx+

∫
Bρ(z)

∣∣∣∣log
1

|x− z|

∣∣∣∣6α−9

dx

.
∫ ρ

0
r

∣∣∣∣log
1

r

∣∣∣∣6α−9

dr +

∫ ρ

0
r

∣∣∣∣log
1

r

∣∣∣∣6α−9

dr <∞.

Combining the above estimates completes the proof.

2.3. Stochastic direct problem. In this section, we discuss the solution for the stochastic
direct source problem (2.1), (2.3). Consider the scattering problem

(2.8)

{
∆u+ κ2u = g + σẆx in Rd,

∂ru− iκu = o(r−
d−1
2 ) as r →∞,

where the homogeneous colored noise Ẇx has a correlation function

c(x, y) = E(ẆxẆy) = c(x− y) for any x, y ∈ Rd.

We assume that c ∈ Lq0loc(R
d) for some q0 ≥ 1.

Remark 2.3. In practice, there are three types of commonly used correlation functions.
1. Delta kernel: if c(x) = δ(x), then q0 = 1 and the colored noise reduces to the white

noise.
2. Riesz kernel: if c(x) = |x|−ν , 0 < ν < d. Let Ω ⊂ Rd be a compact set and take ρ > 0

to be sufficiently large such that Ω̄ ⊂ Bρ. It is easy to show that q0 ∈ [1, dν ) since

‖c‖q0Lq0 (Ω) ≤
∫
Bρ(0)

|x|−νq0dx ≤
∫ ρ

0
rd−1r−νq0dr <∞

if d− 1− νq0 > −1, i.e., q0 <
d
ν .

3. Heat kernel: if c(x) = e−|x|
2
. It is clear to note that q0 ∈ [1, ∞].

We make the following hypothesis on the coefficients g and σ to support the well-posedness
of the solution (2.8).
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Hypothesis 2.4. Assume that g ∈ L2(D) and σ ∈ Lp(D), where p ∈ (p0, ∞] if 3
2 ≤ p0 ≤ 2,

or p ∈ (p0,
3p0

3−2p0
) if 1 ≤ p0 <

3
2 for d = 2, and p ∈ ( 3p0

3−p0 ,∞] for d = 3. Moreover, we require

that σ ∈ C0,η(D), i.e., η-Hölder continuous, where η ∈ (0, 1].

Under Hypothesis 2.4, we may show that the unique solution of (2.8) is given by

u(x) =

∫
D
G(x, y)g(y)dy +

∫
D
G(x, y)σ(y)dWy.

Before discussing the solution of the stochastic scattering problem (2.8), let us first make
some comments about Hypothesis 2.4. The assumption on g ∈ L2(D) is motivated by the
solution of the deterministic direct problem (2.4). The regularity of σ is chosen such that the
stochastic integral ∫

D
G(x, y)σ(y)dWy

is well-posed, i.e., it satisfies

E

(∣∣∣∣∫
D
G(x, y)σ(y)dWy

∣∣∣∣2
)

=

∫
D

∫
D
G(x, y)σ(y)c(y − z)G(x, z)σ(z)dydz <∞,(2.9)

where Proposition B.1 is used in the above identity.
We will need the following Young’s inequality for convolutions (cf. [1, Theorem 2.24]).

Lemma 2.5. Let p, q, r ≥ 1 and suppose that 1
p + 1

q + 1
r = 2. It holds that∣∣∣∣∫

Rd

∫
Rd
u(x)v(x− y)w(y)dxdy

∣∣∣∣ ≤ ‖u‖p‖v‖q‖w‖r
∀u ∈ Lp(Rd), v ∈ Lq(Rd), w ∈ Lr(Rd).

Applying Lemma 2.5 to the integral in the right-hand side of (2.9) leads to∫
D

∫
D
G(x, y)σ(y)c(y − z)G(x, z)σ(z)dydz

=

∫
Rd

∫
Rd
χD(y)G(x, y)σ(y)χB2R

(y − z)c(y − z)χD(z)G(x, z)σ(z)dydz

≤ ‖G(x, ·)σ(·)‖2Lp0 (D)‖c‖Lq0 (B2R),

where p0 = 2q0
2q0−1 . Note that from q0 ≥ 1, we have p0 ∈ [1, 2].

Remark 2.6. For the delta kernel, it is easy to verify that

E

(∣∣∣∣∫
D
G(x, y)σ(y)dWy

∣∣∣∣2
)

=

∫
D
|G(x, y)|2σ2(y)dy.

Hence we require that p0 = 2. In fact, when c(x) = δ(x) and q0 = 1, we have p0 = 2q0
2q0−1 = 2.
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When d = 2, we consider the singular part of Green’s function. It follows from the Hölder
inequality that

∫
D

∣∣∣∣log
1

|x− y|

∣∣∣∣p0 σp0(y)dy ≤

(∫
D

∣∣∣∣log
1

|x− y|

∣∣∣∣
p0p
p−p0

dy

) p−p0
p (∫

D
|σ(y)|pdy

) p0
p

.

Since the first term on the right-hand side of the above inequality is a singular integral,
p should be chosen such that it is well defined. Let ρ > 0 be sufficiently large such that
D̄ ⊂ Bρ(x). A simple calculation yields

∫
D

∣∣∣∣log
1

|x− y|

∣∣∣∣
p0p
p−p0

dy ≤
∫
Bρ(x)

∣∣∣∣log
1

|x− y|

∣∣∣∣
p0p
p−p0

dy .
∫ ρ

0
r

∣∣∣∣log
1

r

∣∣∣∣
p0p
p−p0

dr.

It is clear to note that the above integral is well defined when p > p0.
Besides, we require that p0p

p−p0 >
3
2 in order to utilize (2.6), which means that if 1 ≤ p0 <

3
2 ,

then we need p ∈ (p0,
3p0

3−2p0
); else if 3

2 ≤ p0 ≤ 2, then we only need p > p0.
When d = 3, we have from the Hölder inequality that∫

D
|G3(x, y)|p0σp0(y)dy .

∫
D
|x− y|−p0σp0(y)dy

≤
(∫

D
|x− y|−

p0p
p−p0 dy

) p−p0
p
(∫

D
|σ(y)|pdy

) p0
p

.

Similarly, we may pick a ball Bρ(x) satisfying D̄ ⊂ Bρ(x) such that∫
D
|x− y|−

p0p
p−p0 dy ≤

∫
Bρ(x)

|x− y|−
p0p
p−p0 dy .

∫ ρ

0
r
−
(
p0p
p−p0

−2
)
dr.

Clearly, the above integral is well defined when p0p
p−p0 −2 < 1, which gives p > 3p0

3−p0 . Therefore

we conclude that p > 3p0
3−p0 for d = 3.

Finally note that the Hölder continuity will be used in the analysis for existence of the
solution.

Now we are in the position to present the well-posedness of the solution for the stochas-
tic scattering problem (2.8). The explicit solution will be used to derive Fredholm integral
equations for the inverse problem.

Theorem 2.7. Let Ω ⊂ Rd be a bounded domain. Under Hypothesis 2.4, there exists a
unique continuous stochastic process u : Ω→ C satisfying

(2.10) u(x) =

∫
D
G(x, y)g(y)dy +

∫
D
G(x, y)σ(y)dWy,

which is called the mild solution of the stochastic scattering problem (2.8).
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Proof. First we show that there exists a continuous modification of the random field

v(x) =

∫
D
G(x, y)σ(y)dWy, x ∈ Ω.

For any x, z ∈ Ω, we have from Proposition B.1, Lemma 2.5, and the Hölder inequality that

E(|v(x)− v(z)|2) =

∫
D

∫
D

(G(x, y)−G(z, y))σ(y)

× c(y − ξ)
(
G(x, ξ)−G(z, ξ)

)
σ(ξ)dydξ

≤ ‖ (G(x, ·)−G(z, ·))σ(·)‖2Lp0 (D)‖c‖Lq0 (B2R)

≤ ‖G(x, ·)−G(z, ·)‖2
L

p0p
p−p0 (D)

‖σ‖2Lp(D)‖c‖Lq0 (B2R).

When d = 2 and p0p
p−p0 >

3
2 , it follows from (2.6) that∫

D
|G2(x, y)−G2(z, y)|

p0p
p−p0 dy . |x− z|

3
2 ,

which gives

E(|v(x)− v(z)|2) . |x− z|
3(p−p0)
p0p .

Since v(x)− v(z) is a random Gaussian variable, we have (cf. [24, Proposition 3.14]) for any
integer q that

E(|v(x)− v(z)|2q) . (E(|v(x)− v(z)|))2q ≤
(
E(|v(x)− v(z)|2)

)q
. |x− z|

3q(p−p0)
p0p .

Taking q > p0p
3(p−p0) , we obtain from Kolmogorov’s continuity theorem that there exists a

continuous modification of the random field v.
When d = 3 and p0p

p−p0 < 3, we know from (2.7) that∫
D
|G3(x, y)−G3(x, z)|

p0p
p−p0 dy . |x− z|γ

with γ = min{ p0p
p−p0 , 3− p0p

p−p0 }, which gives

E(|v(x)− v(z)|2) . |x− z|
2γ(p−p0)
p0p .

Similarly, we get for any integer q that

E(|v(x)− v(z)|2q) . |x− z|
2qγ(p−p0)

p0p .

Taking q > p0p
2γ(p−p0) and using Kolmogorov’s continuity theorem, we obtain that there exists

a continuous modification of the random field v.
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Clearly, the uniqueness of the mild solution comes from the solution representation (2.10),
which depends only on the Green function G and the source functions g and σ.

Next we present a constructive proof to show the existence. We shall construct a sequence
of processes Ẇn

x satisfying σẆn ∈ L2(D) and a sequence

vn(x) =

∫
D
G(x, y)σ(y)dWn

y , x ∈ Ω,

which satisfies vn → v in L2(Ω) as n→∞.
Let Tn = ∪nj=1Kj be a regular triangulation of D, where Kj are either triangles for d = 2

or tetrahedra for d = 3. The piecewise constant approximation sequence is given by

Ẇn
x =

n∑
j=1

|Kj |−1

∫
Kj

dWxχj(x),

where χj is the characteristic function of Kj and∫
Kj

dWx ∼ N (0,Varj), Varj =

∫
Kj

∫
Kj

c(x− y)dxdy.

Clearly we have for any p ≥ 1 that

E
(
‖Ẇn‖pLp(D)

)
= E

∫
D

∣∣∣∣∣∣
n∑
j=1

|Kj |−1

∫
Kj

dWxχj(x)

∣∣∣∣∣∣
p

dx


. E

∫
D

n∑
j=1

|Kj |−p
∣∣∣∣∣
∫
Kj

dWx

∣∣∣∣∣
p

χj(x)dx

 .
n∑
j=1

|Kj |1−p (Varj)
p
2 <∞,

which shows that Ẇn ∈ Lp(D), for any p ≥ 1. It follows from the Hölder inequality that for
a given p meeting Hypothesis 2.4, we let q satisfying 1

p + 1
q = 1

2 , and then

‖σẆn‖L2(D) . ‖σ‖2Lp(D)‖Ẇ
n‖2Lq(D) <∞,

which means σẆn ∈ L2(D).
Using Proposition B.1 and Lemma 2.5, we have

E

(∫
Ω

∣∣∣∣∫
D
G(x, y)σ(y)dWy −

∫
D
G(x, y)σ(y)dWn

y

∣∣∣∣2 dx

)

= E

∫
Ω

∣∣∣∣∣∣
n∑
j=1

∫
Kj

G(x, y)σ(y)dWy −
n∑
j=1

|Kj |−1

∫
Kj

G(x, z)σ(z)dz

∫
Kj

dWy

∣∣∣∣∣∣
2

dx


= E

∫
Ω

∣∣∣∣∣∣
n∑
j=1

∫
Kj

∫
Kj

|Kj |−1(G(x, y)σ(y)−G(x, z)σ(z))dzdWy

∣∣∣∣∣∣
2

dx


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= E

∫
Ω

∣∣∣∣∣∣
∫
D

n∑
j=1

χj(y)|Kj |−1

∫
Kj

(G(x, y)σ(y)−G(x, z)σ(z))dzdWy

∣∣∣∣∣∣
2

dx


≤
∫

Ω

∥∥∥∥∥∥
n∑
j=1

χj(·)|Kj |−1

∫
Kj

(G(x, ·)σ(·)−G(x, z)σ(z))dz

∥∥∥∥∥∥
2

Lp0 (D)

‖c‖Lq0 (B2R)dx.

Since ∥∥∥∥∥∥
n∑
j=1

χj(·)|Kj |−1

∫
Kj

(G(x, ·)σ(·)−G(x, z)σ(z))dz

∥∥∥∥∥∥
2

Lp0 (D)

=

∫
D

∣∣∣∣∣∣
n∑
j=1

χj(y)|Kj |−1

∫
Kj

(G(x, y)σ(y)−G(x, z)σ(z))dz

∣∣∣∣∣∣
p0

dy


2
p0

. |D|
2
p0
−1
∫
D

∣∣∣∣∣∣
n∑
j=1

χj(y)|Kj |−1

∫
Kj

(G(x, y)σ(y)−G(x, z)σ(z))dz

∣∣∣∣∣∣
2

dy

= |D|
2
p0
−1
∫
D

n∑
j=1

χj(y)|Kj |−2

∣∣∣∣∣
∫
Kj

(G(x, y)σ(y)−G(x, z)σ(z))dz

∣∣∣∣∣
2

dy

. |D|
2
p0
−1

n∑
j=1

|Kj |−1

∫
Kj

∫
Kj

|G(x, y)σ(y)−G(x, z)σ(z)|2 dzdy,

we have

E

(∫
Ω

∣∣∣∣∫
D
G(x, y)σ(y)dWy −

∫
D
G(x, y)σ(y)dWn

y

∣∣∣∣2 dx

)

. |D|
2
p0
−1‖c‖Lq0 (B2R)

n∑
j=1

|Kj |−1

×
∫
Kj

∫
Kj

∫
Ω
|G(x, y)σ(y)−G(x, z)σ(z)|2dxdzdy

.
n∑
j=1

|Kj |−1

∫
Kj

∫
Kj

∫
Ω
|G(x, y)σ(y)−G(x, z)σ(z)|2dxdzdy.

Using the triangle and Cauchy–Schwartz inequalities yields∫
Ω
|G(x, y)σ(y)−G(x, z)σ(z)|2dx

.
∫

Ω
|G(x, y)−G(x, z)|2|σ(y)|2dx+

∫
Ω
|G(x, z)|2|σ(y)− σ(z)|2dx.
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For d = 2, it follows from (2.6), Lemma 2.1, and the η-Hölder continuity of σ that∫
Ω
|G2(x, y)σ(y)−G2(x, z)σ(z)|2dx . σ2(y)|y − z|

3
2 + |y − z|2η,

which gives

E

(∫
Ω

∣∣∣∣∫
D
G2(x, y)σ(y)dWy −

∫
D
G2(x, y)σ(y)dWn

y

∣∣∣∣2 dx

)

.
n∑
j=1

|Kj |−1

∫
Kj

∫
Kj

σ2(z)|y − z|
3
2 dzdy +

n∑
j=1

|Kj |−1

∫
Kj

∫
Kj

|y − z|2ηdzdy

≤ ‖σ‖2L2(D) max
1≤j≤n

(diamKj)
3
2 + |D| max

1≤j≤n
(diamKj)

2η → 0

as n→∞ since the diameter of Kj → 0 as n→∞.
For d = 3, we have from (2.7), Lemma 2.1, and the η-Hölder continuity of σ that∫

Ω
|G3(x, y)σ(y)−G3(x, z)σ(z)|2dx . σ2(y)|y − z|+ |y − z|2η,

which gives

E

(∫
Ω

∣∣∣∣∫
D
G3(x, y)σ(y)dWy −

∫
D
G3(x, y)σ(y)dWn

y

∣∣∣∣2 dx

)

.
n∑
j=1

|Kj |−1

∫
Kj

∫
Kj

σ2(z)|y − z|dzdy +

n∑
j=1

|Kj |−1

∫
Kj

∫
Kj

|y − z|2ηdzdy

. ‖σ‖2L2(D) max
1≤j≤n

(diamKj) + |D| max
1≤j≤n

(diamKj)
2η → 0

as n→∞ since the diameter of Kj → 0 as n→∞.
For each n ∈ N, we consider the scattering problem

(2.11)

{
∆un + κ2un = g + σẆn

x in Rd,
∂ru

n − iκun = o(r−
d−1
2 ) as r →∞.

It follows from σẆn
x ∈ L2(D) that the problem (2.11) has a unique solution given by

(2.12) un(x) =

∫
D
G(x, y)g(y)dy + vn(x).

Let

u(x) =

∫
D
G(x, y)g(y)dy + v(x).

Since E(‖un − u‖2L2(Ω)) = E(‖vn − v‖2L2(Ω)) → 0 as n → ∞, there exists a subsequence of

{un} which converges to u. Letting n→∞ in (2.12), we obtain the mild solution (2.10) and
complete the proof.

Remark 2.8. It is clear to note that the mild solution of the stochastic direct problem
(2.10) reduces to the solution of the deterministic direct problem (2.5) when σ = 0, i.e., no
randomness is present in the source.
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3. Stochastic inverse problem. In this section, we derive the Fredholm integral equations
and develop a regularized Kaczmarz method to solve the stochastic inverse problem by using
multifrequency scattering data.

3.1. Integral equations. We assume that the random source is driven by the incoherent
white noise so that the variance can be reconstructed. Recall the mild solution at wavenumber
κj :

(3.1) u(x, κj) =

∫
D
G(x, y, κj)g(y)dy +

∫
D
G(x, y, κj)σ(y)dW̃y.

Taking the expectation on both sides of (3.1) and using

E

(∫
D
G(x, y, κj)σ(y)dW̃y

)
= 0,

we obtain

E(u(x, κj)) =

∫
D
G(x, y, κj)g(y)dy,

which is a complex-valued Fredholm integral equation of the first kind and may be used to
reconstruct g. We point out from the above equation that the reconstruction formula of g
looks like the one for the deterministic inverse problem except that the known boundary data
is given by the expectation of the radiation wave field. It is more convenient to solve real-
valued equations. We split all the complex-valued quantities into their real and imaginary
parts.

Let u = Reu+ iImu and G = ReG+ iImG. More explicitly, we have

(3.2) ReG2 =
1

4
Y0(κj |x− y|), ImG2 = −1

4
J0(κj |x− y|)

and

(3.3) ReG3 = − 1

4π

cos(κj |x− y|)
|x− y|

, ImG3 = − 1

4π

sin(κj |x− y|)
|x− y|

.

Here J0 and Y0 are the Bessel function of the first and the second kind with order zero,
respectively.

The mild solution (3.1) can be split into real and imaginary parts:

(3.4) Reu(x, κj) =

∫
D

ReG(x, y, κj)g(y)dy +

∫
D

ReG(x, y, κj)σ(y)dW̃y

and

(3.5) Imu(x, κj) =

∫
D

ImG(x, y, κj)g(y)dy +

∫
D

ImG(x, y, κj)σ(y)dW̃y.

Noting

E

(∫
D

ReG(x, y, κj)σ(y)dW̃y

)
= 0, E

(∫
D

ImG(x, y, κj)σ(y)dW̃y

)
= 0,



1276 GANG BAO, CHUCHU CHEN, AND PEIJUN LI

Figure 1. Log scale for singular values of the Fredholm integral equations for the reconstruction of g: (left)
the two-dimensional case; (right) the three-dimensional case.

we take the expectation on both sides of (3.4) and (3.5) and obtain real-valued Fredholm
integral equations of the first kind to reconstruct g:

E(Reu(x, κj)) =

∫
D

ReG(x, y, κj)g(y)dy,

E(Imu(x, κj)) =

∫
D

ImG(x, y, κj)g(y)dy.

Substituting the real and imaginary parts of the two-dimensional Green function (3.2) and
the three-dimensional Green function (3.3) into the above equations yields

E(Reu(x, κj)) =
1

4

∫
D
Y0(κj |x− y|)g(y)dy,(3.6)

E(Imu(x, κj)) = −1

4

∫
D
J0(κj |x− y|)g(y)dy(3.7)

and

E(Reu(x, κj)) = − 1

4π

∫
D

cos(κj |x− y|)
|x− y|

g(y)dy,(3.8)

E(Imu(x, κj)) = − 1

4π

∫
D

sin(κj |x− y|)
|x− y|

g(y)dy.(3.9)

It is known that Fredholm integral equations of the first kind are ill-posed due to rapidly
decaying singular values of matrices from the discretized integral kernels. Appropriate reg-
ularization methods are needed to recover the information about the solutions as stably as
possible. As a representative example, Figure 1 plots the singular values of the matrices for
the Fredholm integral equations (3.6)–(3.9) at κ = 2.5π, where in the y-axis we use a base 10
logarithmic scale. We can observe similar decaying patterns of the singular values for (3.6),
(3.7) for the two-dimensional case and (3.8), (3.9) for the three-dimensional case. It will not
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make much difference to use (3.6) or (3.7) to reconstruct g in two dimensions or to use (3.8)
or (3.9) to reconstruct g in three dimensions.

Using the identities in Proposition A.2,

E

(∣∣∣∣∫
D

ReG(x, y, κj)σ(y)dW̃y

∣∣∣∣2
)

=

∫
D
|ReG(x, y, κj)|2σ2(y)dy

and

E

(∣∣∣∣∫
D

ImG(x, y, κj)σ(y)dW̃y

∣∣∣∣2
)

=

∫
D
|ImG(x, y, κj)|2σ2(y)dy,

we take the variance on both sides of (3.4) and (3.5) and obtain

V(Reu(x, κj)) =

∫
D
|ReG(x, y, κj)|2σ2(y)dy,

V(Imu(x, κj)) =

∫
D
|ImG(x, y, κj)|2σ2(y)dy,

which are the Fredholm integral equations of the first kind to reconstruct the variance. Again,
we substitute (3.2) and (3.3) into the above equations and get

V(Reu(x, κj)) =
1

16

∫
D
Y 2

0 (κj |x− y|)σ2(y)dy,(3.10)

V(Imu(x, κj)) =
1

16

∫
D
J2

0 (κj |x− y|)σ2(y)dy(3.11)

and

V(Reu(x, κj)) =
1

16π2

∫
D

cos2(κj |x− y|)
|x− y|2

σ2(y)dy,(3.12)

V(Imu(x, κj)) =
1

16π2

∫
D

sin2(κj |x− y|)
|x− y|2

σ2(y)dy.(3.13)

To investigate ill-posedeness of the above four equations, we plot their singular values
in Figure 2. It can be seen that (3.10), (3.11) and (3.12), (3.13) show almost identical dis-
tributions of the singular values for the two- and three-dimensional cases, respectively. The
singular values decay exponentially to zeros and there is a big gap between the few leading
singular values and the rests. Hence it is severely ill-posed to use directly either (3.10) or
(3.11) and (3.12) or (3.13) to reconstruct σ2. Subtracting (3.11) from (3.10) and (3.13) from
(3.12), we obtain improved equations to reconstruct σ2 in both two- and three-dimensional
cases:

V(Reu(x, κj))−V(Imu(x, κj))(3.14)

=
1

16

∫
D

(
Y 2

0 (κj |x− y|)− J2
0 (κj |x− y|)

)
σ2(y)dy,
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Figure 2. Log scale for singular values of the Fredholm integral equations for the reconstruction of σ2: (left)
the two-dimensional case; (right) the three-dimensional case.

V(Reu(x, κj))−V(Imu(x, κj)) =
1

16π2

∫
D

cos(2κj |x− y|)
|x− y|2

σ2(y)dy.(3.15)

In fact, it is clear to note in Figure 2 that the singular values of (3.14) and (3.15) display
better behavior that those of (3.10), (3.11) and (3.12), (3.13). They decay more slowly and
distribute more uniformly. Numerically, (3.14) and (3.15) do give much better reconstructions.
We will only show the results by using (3.14) and (3.15) in the numerical experiments.

Mathematically, the reconstruction formulas require the knowledge of the expectation of
the real data. Based on the strong law of large numbers, the expected value of a random
variable can be approximated by the average obtained from a large number of trials. The
average will tend to become closer to the expectation as more trials are performed. Since we
can only take finitely many trials, the actual input will always contain noise.

3.2. Numerical method. In this section, we propose a regularized Kaczmarz method
to solve the ill-posed integral equations. The classical Kaczmarz algorithm is an iterative
method for solving linear systems of algebraic equations [29]. The idea is to project the
current approximation solution successively onto each of the hyperplanes. It turns out that
such a procedure converges to the minimum norm solution of the system provided that the
solution set is nonempty.

Consider the following operator equations:

(3.16) Ajq = pj , j = 1, . . . ,m,

where the index j means different wavenumber κj , q represents the unknown g or σ2, and pj
is the given data. We take (3.6) as an example, q is the unknown g, pj denotes the boundary
data E(Reu(x, κj)), and the operator Aj is given by

Ajq(x) =
1

4

∫
D
Y0(κj |x− y|)q(y)dy.
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Letting the initial guess q0 = 0, the classical Kaczmarz method for solving (3.16) reads as
follows: For k = 0, 1, . . . ,

(3.17)


q0 = qk,

qj = qj−1 +A∗j (AjA
∗
j )
−1(pj −Ajqj−1), j = 1, . . . ,m,

qk+1 = qm,

where A∗j is the adjoint operator of Aj . In (3.17), there are two loops: the outer loop is
carried for iterative index k and the inner loop is done for the different wavenumber κj . In
practice, the operator AjA

∗
j may not be invertible or is ill-conditioned even if it is invertible.

A regularization technique is needed.
We propose a regularized Kaczmarz method: Let the initial guess q0 = 0,

(3.18)


q0 = qk,

qj = qj−1 +A∗j (µI +AjA
∗
j )
−1(pj −Ajqj−1), j = 1, . . . ,m,

qk+1 = qm,

for k = 0, 1, . . . , where µ > 0 is the regularization parameter and I is the identity operator.
Although there are two loops in (3.18), the operator µI + AjA

∗
j leads to small scale linear

system of equations with size equal to the number of measurements. Moreover, they essentially
need to be solved only m times by a direct solver such as the LU decomposition since Aj keep
unchanged in the outer loop.

4. Numerical experiments. In this section, we discuss the algorithmic implementation for
the direct and inverse random source scattering problems and present one two-dimensional
example and one three-dimensional example to demonstrate the validity and effectiveness of
the proposed method.

The scattering data is obtained by the numerical solution of the stochastic Helmholtz
equation instead of the numerical integration of the Fredholm integral equations in order to
avoid the so-called inverse crime. Although the stochastic Helmholtz equation can be more
efficiently solved by using the Wiener chaos expansions to obtain statistical moments such as
the mean and variance [5], we choose the Monte Carlo method to simulate the actual process
of measuring data. In each realization, the stochastic Helmholtz equation is solved by using
the finite element method with the perfectly matched layer (PML) technique [13]. After all
the realizations are done, we take an average of the solutions and use it as approximated
scattering data to either the mean or the variance. It is clear to note that the data is more
accurate as more realizations are taken. In the following two examples, we take five equally
spaced wavenumbers κj = (j+0.5)π, j = 0, . . . , 4; the regularization parameter µ is 1.0×10−7;
the number of the outer loop for the Kaczmarz iteration is 5; the total number of realizations
is 105.

First we consider a two-dimensional example. Let

g(x1, x2) = 0.3(1− x1)2e−x
2
1−(x2+1)2 − (0.2x1 − x3

1 − x5
2)e−x

2
1−x22 − 0.03e−(x1+1)2−x22

and

σ(x1, x2) = 0.6e−8(r3−0.75r2), r = (x2
1 + x2

2)1/2,
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Figure 3. The two-dimensional example: (left) surface plot of the exact mean g1; (right) surface plot of
the exact variance σ1.

Figure 4. Two-dimensional example: (left) surface plot of the reconstructed mean g1; (right) surface plot
of the reconstructed variance σ1.

and reconstruct the mean g1 and the variance σ1 given by

g1(x1, x2) = g(3x1, 3x2) and σ1(x1, x2) = σ2(x1, x2)

inside the domain D1 = [−1, 1]×[−1, 1]. See Figure 3 for the surface plot of the exact g1 (left)
and σ1 (right). The computational domain is set to be [−3, 3]×[−3, 3] with the PML thickness
0.5. After the direct problem is solved and the value of u is obtained at the grid points, the
linear interpolation is used to generate the synthetic data at 40 uniformly distributed points
on the circle with radius 2, i.e., x1 = 2 cos θi, x2 = 2 sin θi, θi = iπ/20, i = 0, 1, . . . , 39. Figure 4
shows the reconstructed mean g1 and variance σ1.

Next we consider a three-dimensional example. Denote D2 = [−1, 1] × [−1, 1] × [−1, 1].
Let

g(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3)
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Figure 5. Three-dimensional example: (left) cross-section plot of the exact mean g2 at x1 = 0.5, x2 =
0.5, x3 = −0.5; (right) cross-section plot of the exact variance σ2 at x1 = 0.0, x2 = 0.0, x3 = 0.0.

and

σ(x1, x2, x3) = 0.6e−8(r3−0.75r2), r = (x2
1 + x2

2 + x2
3)1/2,

and reconstruct the mean g2 and the variance σ2 given by

g2(x1, x2, x3) =

g(x1, x2, x3), x ∈ D2,

0, x /∈ D2,

and

σ2(x1, x2, x3) = σ2(x1, x2, x3),

inside the domain D2. See Figure 5 for the cross-section plots of the exact g2 (left) at x1 =
0.5, x2 = 0.5, x3 = −0.5, and σ2 (right) at x1 = 0.0, x2 = 0.0, x3 = 0.0. The computational
domain is set to be [−3, 3] × [−3, 3] × [−3, 3] with the PML thickness 0.5. After the direct
problem is solved and the value of u is obtained at the grid points, the linear interpolation
is used to generate the synthetic data on the sphere with radius 2 and equally spaced 10 ×
20 points in the (θ, ϕ) plane, i.e, x1 = 2 sin θi cosϕj , x2 = 2 sin θi sinϕj , x3 = 2 cos θi, θi =
iπ/10, ϕj = jπ/10, i = 0, 1, . . . , 9, j = 0, 1, . . . , 19. Figure 6 shows the reconstructed mean g2

and variance σ2.

5. Conclusion. We have studied an inverse random source scattering problem for the
two- and three-dimensional Helmholtz equation where the source is driven by an additive
white noise or colored noise. Under a suitable regularity assumption of the source functions
g and σ, the direct scattering problem is shown constructively to have a unique mild solution
which is given explicitly as an integral equation. Based on the explicit solution, Fredholm
integral equations are deduced for the inverse scattering problem to reconstruct the mean and
the variance of the random source. We propose the regularized Kaczmarz method to solve
the ill-posed integral equations by using multiple frequency data. Numerical examples, one
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Figure 6. Three-dimensional example: (left) cross-section plot of the reconstructed mean g2 at x1 =
0.5, x2 = 0.5, x3 = −0.5; (right) cross-section plot of the reconstructed variance σ2 at x1 = 0.0, x2 = 0.0,
x3 = 0.0.

two-dimensional example and one three-dimensional example, are presented to demonstrate
the validity and effectiveness of the proposed method. We are currently investigating the
inverse random source scattering problem in an inhomogeneous medium where the explicit
Green function is no longer available. Although this paper concerns the inverse random source
scattering problem for the Helmholtz equation, we believe that the proposed framework and
methodology can be directly applied to solve many other inverse random source problems and
even more general stochastic inverse problems. For instance, it is interesting to study inverse
random source problems for the stochastic Poisson, heat, and wave equations. It is interesting
and challenging to consider the inverse random medium scattering problem where the medium
should be modeled as a random function. We hope to be able to report the progress on these
problems in the future.

Appendix A. White noise. Let us first introduce the d-parameter Brownian sheet, which
is also called d-parameter Brownian motion, on (Rd+, B(Rd+), µ), where d ∈ N,Rd+ = {x =
(x1, . . . , xd) ∈ Rd : xj ≥ 0, j = 1, . . . , d}, B(Rd+) is the Borel σ-algebra of Rd+, and µ is the
Lebesgue measure. If x ∈ Rd+, let (0, x] = (0, x1]× · · · × (0, xd].

Definition A.1. The Brownian sheet on Rd+ is the process {W̃x : x ∈ Rd+} defined by W̃x =

W̃{(0, x]}, where W̃ is a random set function satisfying

1. ∀A ∈ B(Rd+), W̃ (A) is a N (0, µ(A)) random variable;

2. ∀A,B ∈ B(Rd+), if A∩B = ∅, then W̃ (A) and W̃ (B) are independent and W̃ (A∪B) =

W̃ (A) + W̃ (B).

It can be verified from Definition A.1 that

E(W̃ (A)W̃ (B)) = µ(A ∩B) ∀ A,B ∈ B(Rd+),

which gives the covariance function of the Brownian sheet

(A.1) E(W̃xW̃y) = x ∧ y := (x1 ∧ y1) · · · (xd ∧ yd)
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for any x = (x1, . . . , xd) ∈ Rd+ and y = (y1, . . . , yd) ∈ Rd+, where xj ∧ yj = min{xj , yj}.
The Brownian sheet can be generalized to be defined on the whole space Rd by introducing

2d independent Brownian sheets defined on Rd+. Define a multi-index t = (t1, . . . , td) with

tj = {1, −1} for j = 1, . . . , d. Introduce 2d independent Brownian sheets {W̃ t} defined on
Rd+. For any x = (x1, . . . , xd) ∈ Rd, define the Brownian sheet

W̃x := W̃
t(x)
x̆ ,

where x̆ = (|x1|, . . . , |xd|) and t(x) = (sgn(x1), . . . , sgn(xd)). The sign function sgn(xj) = 1 if
xj ≥ 0, otherwise sgn(xj) = −1.

In two or more parameters, white noise can be thought of as the derivative of the Brownian
sheet. In fact, the Brownian sheet W̃x is nowhere-differentiable in the ordinary sense, but its
derivatives will exist in the sense of Schwartz distributions. Define

˙̃
W x =

∂dW̃x

∂x1 · · · ∂xd
.

If φ(x) is a deterministic square-integrable complex-valued test function with a compact sup-

port in Rd, then
˙̃
W x is the distribution

˙̃
W x(φ) = (−1)n

∫
Rn
W̃x

∂nφ(x)

∂x1 · · · ∂xn
dx.

We may define the stochastic integral

(A.2)

∫
Rn
φ(x)dW̃x = (−1)d

∫
Rd
W̃x

∂dφ(x)

∂x1 · · · ∂xd
dx.

Proposition A.2. Let φ(x) be a test function with a compact support in Rd. It holds that

E

(∫
Rd
φ(x)dW̃x

)
= 0, E

(∣∣∣∣∫
Rd
φ(x)dW̃x

∣∣∣∣2
)

=

∫
Rn
|φ(x)|2dx.

Proof. It follows from (A.2) that

E

(∫
Rd
φ(x)dW̃x

)
= (−1)d

∫
Rd

∂dφ(x)

∂x1 · · · ∂xd
E(W̃x)dx = 0.

Using (A.1), we have

E

(∣∣∣∣∫
Rd
φ(x)dW̃x

∣∣∣∣2
)

= E

(∫
Rd
W̃x

∂dφ(x)

∂x1 · · · ∂xd
dx×

∫
Rd
W̃y

∂dφ̄(y)

∂y1 · · · ∂yd
dy

)
=

∫
Rd

∫
Rd

∂dφ(x)

∂x1 · · · ∂xd
∂dφ̄(y)

∂y1 · · · ∂yd
E(W̃xW̃y)dxdy

=

∫
Rd

∂dφ̄(y)

∂y1 · · · ∂yd

(∫
Rd

∂dφ(x)

∂x1 · · · ∂xd
(x ∧ y)dx

)
dy.



1284 GANG BAO, CHUCHU CHEN, AND PEIJUN LI

We claim that

(A.3)

∫
Rd

∂dφ(x)

∂x1 · · · ∂xd
(x ∧ y)dx = (−1)d

∫ y1

−∞
· · ·
∫ yd

−∞
φ(x)dxd · · · dx1,

which is proved in the following by the method of induction.
First, we show (A.3) for d = 1. Using the integration by parts yields∫

R

∂φ(x1)

∂x1
(x1 ∧ y1)dx1 =

∫ y1

−∞

∂φ(x1)

∂x1
x1dx1 +

∫ ∞
y1

∂φ(x1)

∂x1
y1dx1

= x1φ(x1)
∣∣y1
−∞ −

∫ y1

−∞
φ(x1)dx1 + y1φ(x1)

∣∣∞
y1

= −
∫ y1

−∞
φ(x1)dx1.

We assume that (A.3) is valid for a d ∈ N, i.e.,∫
Rd

∂dφ(x)

∂x1 · · · ∂xd
(x ∧ y)dx = (−1)d

∫ y1

−∞
· · ·
∫ yd

−∞
φ(x)dxd · · · dx1.

Next we show that (A.3) holds for d + 1. Let x = (x1, . . . , xd) ∈ Rd, y = (y1, . . . , yd) ∈ Rd,
and xd+1, yd+1 ∈ R. Denote ∂x = ∂x1 · · · ∂xd. It follows from the integration by parts that∫

Rd+1

∂d+1φ(x, xd+1)

∂x∂xd+1
(x ∧ y)(xd+1 ∧ yd+1)dxdxd+1

=

∫
Rd

∫ yd+1

−∞

∂

∂xd+1

(
∂dφ(x, xd+1)

∂x

)
(x ∧ y)xd+1dxd+1dx

+

∫
Rd

∫ ∞
yd+1

∂

∂xd+1

(
∂dφ(x, xd+1)

∂x

)
(x ∧ y)yd+1dyd+1dx

= yd+1

∫
Rd

∂dφ(x, yd+1)

∂x
(x ∧ y)dx−

∫
Rd

∫ yd+1

−∞

∂dφ(x, xd+1)

∂x
(x ∧ y)dxd+1dx

− yd+1

∫
Rd

∂dφ(x, yd+1)

∂x
(x ∧ y)dx

= (−1)d+1

∫ y1

−∞
· · ·
∫ yd

−∞

∫ yd+1

−∞
φ(x, xd+1)dxd+1dx,

which completes the proof of (A.3).
Combining the above estimates, we obtain

E

(∣∣∣∣∫
Rd
φ(x)dW̃x

∣∣∣∣2
)

=

∫
Rd

∂dφ̄(y)

∂y1 . . . ∂yd

(∫ y1

−∞
· · ·
∫ yd

−∞
φ(x)dx

)
dy

=

∫
Rd
|φ(x)|2dx,

which completes the proof.
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Appendix B. Colored noise. Let Q be a nonnegative and symmetric trace class linear
operator which can be described by a kernel k(x, y):

(Qf)(x) =

∫
Rd
k(x, y)f(y)dy, x, y ∈ Rd.

A colored noise, as the formal derivative of a stochastic process Wx, denoted by Ẇ (x), can
be defined via the following approach:

Ẇx = Q
˙̃
W x,

where
˙̃
W x is the white noise. If the linear operator Q commutes with the differential op-

erator ∂d/∂x1 · · · ∂xd, then the stochastic process Wx = QW̃x with W̃x being the standard
d-parameter Brownian motion.

For any A,B ∈ B(Rd), W (A) satisfies

W (A) ∼ N
(

0,

∫
A

∫
A
c(x, y)dxdy

)
and

E(W (A)W (B)) =

∫
A

∫
B
c(x, y)dxdy,

where c is the correlation function of Ẇ (x) and is given by

c(x, y) : = E
(
ẆxẆy

)
= E

(∫
Rd
k(x, z)dW̃z ×

∫
Rd
k(y, z)dW̃z

)
=

∫
Rd
k(x, z)k(y, z)dz.

Specially, if c(x, y) = δ(x− y), i.e., Q is the identity operator, then the colored noise reduces
the white noise.

If φ(x) is a deterministic square-integrable complex-valued test function with a compact
support in Rd, then Ẇx is also the distribution

Ẇx(φ) = (−1)d
∫
Rd
Wx

∂dφ(x)

∂x1 · · · ∂xd
dx,

which is equivalent to

Ẇx(φ) =
˙̃
W x(Qφ) = (−1)d

∫
Rd
W̃x

∂d(Qφ)(x)

∂x1 · · · ∂xd
dx.

We may define a stochastic integral with respect to the colored noise by∫
Rd
φ(x)dWx = (−1)d

∫
Rd
Wx

∂dφ(x)

∂x1 · · · ∂xd
dx

or equivalently

(B.1)

∫
Rd
φ(x)dWx = (−1)d

∫
Rd
W̃x

∂d(Qφ)(x)

∂x1 · · · ∂xd
dx.
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Proposition B.1. Let φ(x) be a test function with a compact support in Rd. It holds that

E

(∫
Rd
φ(x)dWx

)
= 0, E

(∣∣∣∣∫
Rd
φ(x)dWx

∣∣∣∣2
)

=

∫
Rd

∫
Rd
φ(x)c(x, y)φ̄(y)dxdy.

Proof. Using (B.1), we get

E

(∫
Rd
φ(x)dWx

)
= (−1)d

∫
Rd

∂d(Qφ)(x)

∂x1 · · · ∂xd
E(W̃x)dx = 0.

It follows from (A.1) and (B.1) that

E

(∣∣∣∣∫
Rd
φ(x)dWx

∣∣∣∣2
)

= E

(∫
Rd
W̃x

∂d(Qφ)(x)

∂x1 · · · ∂xd
dx×

∫
Rd
W̃y

∂d(Qφ̄)(y)

∂y1 · · · ∂yd
dy

)
=

∫
Rd

∫
Rd

∂d(Qφ)(x)

∂x1 · · · ∂xd
∂d(Qφ̄)(y)

∂y1 · · · ∂yd
E(W̃xW̃y)dxdy

=

∫
Rd

∫
Rd

∂d(Qφ)(x)

∂x1 · · · ∂xd
∂d(Qφ̄)(y)

∂y1 · · · ∂yd
(x ∧ y)dxdy.

Following the same proof for Proposition A.2, we have

E

(∣∣∣∣∫
Rd
φ(x)dWx

∣∣∣∣2
)

=

∫
Rd

(Qφ)(x)(Qφ̄)(x)dx

=

∫
Rd

(∫
Rd
k(x, y)φ(y)dy

)(∫
Rd
k(x, z)φ̄(z)dz

)
dx

=

∫
Rd

∫
Rd
φ(y)φ̄(z)

(∫
Rd
k(x, y)k(x, z)dx

)
dydz

=

∫
Rd

∫
Rd
φ(y)φ̄(z)c(y, z)dydz,

which completes the proof.
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